Search results for "Gaussian process"

showing 10 items of 128 documents

Joint Gaussian processes for inverse modeling

2017

Solving inverse problems is central in geosciences and remote sensing. Very often a mechanistic physical model of the system exists that solves the forward problem. Inverting the implied radiative transfer model (RTM) equations numerically implies, however, challenging and computationally demanding problems. Statistical models tackle the inverse problem and predict the biophysical parameter of interest from radiance data, exploiting either in situ data or simulated data from an RTM. We introduce a novel nonlinear and nonparametric statistical inversion model which incorporates both real observations and RTM-simulated data. The proposed Joint Gaussian Process (JGP) provides a solid framework…

010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologiesNonparametric statisticsInverseInversion (meteorology)Statistical model02 engineering and technologyInverse problem01 natural sciencesData modelingNonlinear systemsymbols.namesakeAtmospheric radiative transfer codesRadiancesymbolsGaussian processAlgorithm021101 geological & geomatics engineering0105 earth and related environmental sciences
researchProduct

Automatic emulator and optimized look-up table generation for radiative transfer models

2017

This paper introduces an automatic methodology to construct emulators for costly radiative transfer models (RTMs). The proposed method is sequential and adaptive, and it is based on the notion of the acquisition function by which instead of optimizing the unknown RTM underlying function we propose to achieve accurate approximations. The Automatic Gaussian Process Emulator (AGAPE) methodology combines the interpolation capabilities of Gaussian processes (GPs) with the accurate design of an acquisition function that favors sampling in low density regions and flatness of the interpolation function. We illustrate the good capabilities of the method in toy examples and for the construction of an…

010504 meteorology & atmospheric sciencesComputer scienceFlatness (systems theory)0211 other engineering and technologiesAtmospheric correctionSampling (statistics)02 engineering and technologyFunction (mathematics)Atmospheric model01 natural sciencessymbols.namesakeKernel (statistics)Lookup tableRadiative transfersymbolsGaussian process emulatorGaussian processAlgorithm021101 geological & geomatics engineering0105 earth and related environmental sciencesInterpolation2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
researchProduct

Multioutput Automatic Emulator for Radiative Transfer Models

2018

This paper introduces a methodology to construct emulators of costly radiative transfer models (RTMs). The proposed methodology is sequential and adaptive, and it is based on the notion of acquisition functions in Bayesian optimization. Here, instead of optimizing the unknown underlying RTM function, one aims to achieve accurate approximations. The Automatic Multi-Output Gaussian Process Emulator (AMO-GAPE) methodology combines the interpolation capabilities of Gaussian processes (GPs) with the accurate design of an acquisition function that favors sampling in low density regions and flatness of the interpolation function. We illustrate the promising capabilities of the method for the const…

010504 meteorology & atmospheric sciencesComputer scienceFlatness (systems theory)Bayesian optimizationSampling (statistics)02 engineering and technologyFunction (mathematics)Atmospheric model01 natural sciencessymbols.namesakeSampling (signal processing)0202 electrical engineering electronic engineering information engineeringsymbolsRadiative transfer020201 artificial intelligence & image processingGaussian process emulatorGaussian processAlgorithm0105 earth and related environmental sciencesInterpolationIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Efficient remote sensing image classification with Gaussian processes and Fourier features

2017

This paper presents an efficient methodology for approximating kernel functions in Gaussian process classification (GPC). Two models are introduced. We first include the standard random Fourier features (RFF) approximation into GPC, which largely improves the computational efficiency and permits large scale remote sensing data classification. In addition, we develop a novel approach which avoids randomly sampling a number of Fourier frequencies, and alternatively learns the optimal ones using a variational Bayes approach. The performance of the proposed methods is illustrated in complex problems of cloud detection from multispectral imagery.

010504 meteorology & atmospheric sciencesContextual image classificationComputer scienceMultispectral imageData classification0211 other engineering and technologiesSampling (statistics)02 engineering and technology01 natural sciencessymbols.namesakeBayes' theoremFourier transformKernel (statistics)symbolsGaussian process021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing
researchProduct

Hyperspectral dimensionality reduction for biophysical variable statistical retrieval

2017

Abstract Current and upcoming airborne and spaceborne imaging spectrometers lead to vast hyperspectral data streams. This scenario calls for automated and optimized spectral dimensionality reduction techniques to enable fast and efficient hyperspectral data processing, such as inferring vegetation properties. In preparation of next generation biophysical variable retrieval methods applicable to hyperspectral data, we present the evaluation of 11 dimensionality reduction (DR) methods in combination with advanced machine learning regression algorithms (MLRAs) for statistical variable retrieval. Two unique hyperspectral datasets were analyzed on the predictive power of DR + MLRA methods to ret…

010504 meteorology & atmospheric sciencesMean squared errorComputer science0211 other engineering and technologies02 engineering and technologycomputer.software_genre01 natural sciencessymbols.namesakeLinear regressionComputers in Earth SciencesEngineering (miscellaneous)Gaussian processHyMap021101 geological & geomatics engineering0105 earth and related environmental sciencesData stream miningbusiness.industryDimensionality reductionHyperspectral imagingPattern recognitionAtomic and Molecular Physics and OpticsComputer Science ApplicationsKernel (statistics)symbolsData miningArtificial intelligencebusinesscomputerISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Optimizing Gaussian Process Regression for Image Time Series Gap-Filling and Crop Monitoring

2020

Image processing entered the era of artificial intelligence, and machine learning algorithms emerged as attractive alternatives for time series data processing. Satellite image time series processing enables crop phenology monitoring, such as the calculation of start and end of season. Among the promising algorithms, Gaussian process regression (GPR) proved to be a competitive time series gap-filling algorithm with the advantage of, as developed within a Bayesian framework, providing associated uncertainty estimates. Nevertheless, the processing of time series images becomes computationally inefficient in its standard per-pixel usage, mainly for GPR training rather than the fitting step. To…

010504 meteorology & atmospheric sciencesMean squared errorComputer science0211 other engineering and technologiesImage processing02 engineering and technologycomputer.software_genre01 natural scienceslcsh:AgricultureKrigingTime series021101 geological & geomatics engineering0105 earth and related environmental sciences2. Zero hungerHyperparameterPixelSeries (mathematics)lcsh:SGaussian processes regressionSatellite Image Time SeriesData miningtime seriesSentinel-2optimizationAgronomy and Crop Sciencecomputercrop monitoringphenology indicatorsAgronomy
researchProduct

Top-of-Atmosphere Retrieval of Multiple Crop Traits Using Variational Heteroscedastic Gaussian Processes within a Hybrid Workflow.

2021

In support of cropland monitoring, operational Copernicus Sentinel-2 (S2) data became available globally and can be explored for the retrieval of important crop traits. Based on a hybrid workflow, retrieval models for six essential biochemical and biophysical crop traits were developed for both S2 bottom-of-atmosphere (BOA) L2A and S2 top-of-atmosphere (TOA) L1C data. A variational heteroscedastic Gaussian process regression (VHGPR) algorithm was trained with simulations generated by the combined leaf-canopy reflectance model PROSAILat the BOA scale and further combined with the Second Simulation of a Satellite Signal in the Solar Spectrum (6SV) atmosphere model at the TOA scale. Establishe…

010504 meteorology & atmospheric sciencesMean squared errorScienceReference data (financial markets)MathematicsofComputing_GENERAL0211 other engineering and technologieshybrid model02 engineering and technologyAtmospheric model01 natural sciencessymbols.namesaketop-of-atmosphere reflectanceKrigingLeaf area indexGaussian process021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsRemote sensing2. Zero hungerQbiophysical and biochemical traits; top-of-atmosphere reflectance; Sentinel-2; variational heteroscedastic Gaussian process regression; hybrid modelvariational heteroscedastic Gaussian process regressionVegetation15. Life on landsymbolsGeneral Earth and Planetary Sciencesbiophysical and biochemical traitsSentinel-2Scale (map)Remote sensing
researchProduct

Exploitation of SAR and Optical Sentinel Data to Detect Rice Crop and Estimate Seasonal Dynamics of Leaf Area Index

2017

This paper presents and evaluates multitemporal LAI estimates derived from Sentinel-2A data on rice cultivated area identified using time series of Sentinel-1A images over the main European rice districts for the 2016 crop season. This study combines the information conveyed by Sentinel-1A and Sentinel-2A into a high-resolution LAI retrieval chain. Rice crop was detected using an operational multi-temporal rule-based algorithm, and LAI estimates were obtained by inverting the PROSAIL radiative transfer model with Gaussian process regression. Direct validation was performed with in situ LAI measurements acquired in coordinated field campaigns in three countries (Italy, Spain and Greece). Res…

010504 meteorology & atmospheric sciencesMean squared errorScienceleaf area index (LAI)0211 other engineering and technologies02 engineering and technology01 natural sciencesCropAtmospheric radiative transfer codesConsistency (statistics)KrigingSpatial consistencyArròs Malalties i plaguesSentinel-1ALeaf area indexmappingSentinel021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing2. Zero hungerLeaf Area IndexSentinel-2AQCiències de la terrarice mapGeneral Earth and Planetary SciencesEnvironmental sciencerice map; leaf area index (LAI); Sentinel-1A; Sentinel-2A; Gaussian process regressionRice cropGaussian process regressionRemote Sensing
researchProduct

Predicting year of plantation with hyperspectral and lidar data

2017

This paper introduces a methodology for predicting the year of plantation (YOP) from remote sensing data. The application has important implications in forestry management and inventorying. We exploit hyperspectral and LiDAR data in combination with state-of-the-art machine learning classifiers. In particular, we present a complete processing chain to extract spectral, textural and morphological features from both sensory data. Features are then combined and fed a Gaussian Process Classifier (GPC) trained to predict YOP in a forest area in North Carolina (US). The GPC algorithm provides accurate YOP estimates, reports spatially explicit maps and associated confidence maps, and provides sens…

010504 meteorology & atmospheric sciencesbusiness.industryComputer scienceForest managementFeature extraction0211 other engineering and technologiesHyperspectral imagingPattern recognition02 engineering and technologyVegetation15. Life on land01 natural sciencessymbols.namesakeLidarsymbolsLidar dataArtificial intelligencebusinessClassifier (UML)Gaussian process021101 geological & geomatics engineering0105 earth and related environmental sciences2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
researchProduct

Calibrating Expert Assessments Using Hierarchical Gaussian Process Models

2020

Expert assessments are routinely used to inform management and other decision making. However, often these assessments contain considerable biases and uncertainties for which reason they should be calibrated if possible. Moreover, coherently combining multiple expert assessments into one estimate poses a long-standing problem in statistics since modeling expert knowledge is often difficult. Here, we present a hierarchical Bayesian model for expert calibration in a task of estimating a continuous univariate parameter. The model allows experts' biases to vary as a function of the true value of the parameter and according to the expert's background. We follow the fully Bayesian approach (the s…

0106 biological sciencesComputer sciencepäätöksentekoRECONCILIATIONInferencecomputer.software_genre01 natural sciencesSTOCK ASSESSMENTenvironmental management010104 statistics & probabilityJUDGMENTSELICITATIONkalakantojen hoito111 Mathematicstilastolliset mallitReliability (statistics)Applied Mathematicsgaussiset prosessitfisheries sciencebias correctionexpert elicitationPROBABILITY62P1260G15symbols62F15Statistics and ProbabilityarviointimenetelmätBayesian probabilityenvironmental management.Bayesian inferenceMachine learningHEURISTICSsymbols.namesakeasiantuntijatMANAGEMENT0101 mathematicsGaussian processGaussian processCATCH LIMITSbusiness.industrybayesilainen menetelmä010604 marine biology & hydrobiologyUnivariateExpert elicitationOPINIONSupra BayesArtificial intelligenceHeuristicsbusinessFISHERIEScomputerBayesian Analysis
researchProduct